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Abstract

In recent years, public bikesharing programs have become a common feature in many cities,

offering residents and visitors a flexible transportation service for commuting, errand-running,

and leisure. This analysis investigates the relationship between bikeshare and the traditional

public transportation system. Using granular, trip-level data, I develop a non-parametric model

to describe the use of bikeshare at a specific location. Compared to this baseline ridership, I find

that severe subway delays are associated with significantly higher bikeshare use, while moderate

delays are not.

Introduction

Bikesharing systems consist of networks of rental bicycles used for individual, point-to-point

trips. They have become a staple of many cities and are used for both commuting and recreational

purposes (Fuller et al., 2013; El-Assi et al., 2017; Kong et al., 2020). In addition, when combined

with transit, bikeshare can modestly decrease the use of private vehicles (Martin and Shaheen, 2014;

Fuller et al., 2013). However, its interaction with other modes of transportation is mixed. Studies

suggest that bikeshare can simultaneously complement existing transit options by alleviating the

‘first and last mile problem’ and act as a substitute for public transit (Martin and Shaheen, 2014;

Kong et al., 2020; Fuller et al., 2019). This analysis contributes to the debate by (1) documenting

the multi-use nature of bikesharing using temporal patterns, and (2) analysing the interplay between

transit and bikesharing, using transit delays as natural experiments.

In particular, I combine granular, trip-level data on bikesharing, detailed data on transit sys-

tem delays, as well as local weather data, to model the impact of subway delays on bikeshare use
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in Toronto, Canada. I use a non-parametric, generalized additive model to describe the temporal

pattern of ridership at the given location, taking into account day of the week, time of day, and

weather conditions. First, the results from model confirm the dual-purpose (commute and leisure)

of bikeshare. During weekdays ridership cyclicality matches general rush-hour trends. In the week-

end, the cyclicality is reversed, with the highest number of trips being made midday. Second, I

find a significant increase in bikeshare ridership during severe subway delays. This finding clearly

demonstrates overlap in the populations that use public transit and bikesharing. Furthermore, it is

consistent with a first/last mile interpretation.

This analysis presents two contributions to the literature. To my knowledge, this is the first

analysis using a natural experiment framework to examine the causal effects of unanticipated service

disruptions on the ridership at the precise time and location of the delay. In addition, this is the

first study to model temporal and spatial patterns of bikesharing using non-parametric techniques.

Literature review

Bikeshare literature has identified certain temporal, spacial, and rider patterns. El-Assi, Mah-

moud and Habib analyze bikeshare demand, specifically in the Toronto context (2017). They model

the year-round effects of the built environment (bicycle infrastructure, proximity to major intersec-

tion, transit or university etc.) and the weather conditions. They find that safety is an important

factor in bikeshare use, with higher ridership near bicycle lanes and lower ridership near major in-

tersections (El-Assi et al., 2017). Proximity to transit, university, good weather are factors in higher

use (El-Assi et al., 2017). In regards to temporal patterns, the authors find that, on weekdays, the

flow of bikes is positively correlated with population and employment density. Whereas, on week-

ends, it is only correlated with population density (El-Assi et al., 2017). Other studies highlight the

proximity to food establishments (Faghih-Iani & Eluru, 2015; Wang et al. 2016). In examining the

barriers and attraction factors to bikesharing, Fishman et al, find different spatial patterns between

users and non-users, with the latter being significantly more geographically dispersed (2014). To

this effect, the main barrier to bikeshare was the lack of docking stations hear home or work, and

the comfort of motorized travel (Fishman et al., 2014). Finally, bikeshare riders tend to be young

adults with relatively high income (Martin, Shaheen and Cohen, 2013; Fishman et al. 2014).

A large portion of the bikeshare literature examines the relationship between bikeshare and other

modes of transportation. Two common lines of discussion are modal substitution and modal inte-
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gration, terms well described by Kong, Jin and Sui (2020). “Modal substitution” refers to replacing

traditional public transport with bikeshare trips. “Modal integration” refers to the use of bikeshare

in addition to transit. Kong et al. also use the term “modal complementarity” to refer to joint use of

transit and bikeshare when the origin and/or destination is not well serviced by public transit (2020).

Literature presents evidence for both types of effects. When examining the dominance of each effect

some studies highlight location (urban versus periphery) (Martin and Shaheen, 2019), others stress

timing and membership type (Kong et al., 2020). Martin and Shaheen use survey data, including

respondents’ homes, from Washington DC and Minneapolis to assess modal integration and sub-

stitution (2014). They find that in Washington DC, urban residents use less public transit (modal

substitution) while those in the periphery used more transit (modal integration/complementarity)

(Martin and Shaheen, 2014). By contrast, the distinction is not as clear in Minneapolis, where

transit use increased even in the core and substitution was more geographically dispersed (Martin

and Shaheen, 2014). The authors indicate that the key distinction is the intensity of the existing

public transport system, in particular of rail, and the degree to which transit caters to long trips

(2014). In areas with sparse rail service, bikesharing is more likely to be a complement, while, in

areas with dense rail, it is more likely to be a substitute (Martin and Shaheen, 2014). Alternatively,

Kong et al. find that time of day, weekends/weekdays, and membership type are more important

than location when determining the modal substitution, integration, and complementarity in four

US cities: Boston, Chicago, Washington DC and New York City (2020).

There is also evidence for more complicated transport substitutions. Fuller et al. (2013) find that

roughly half of bikeshare users surveyed in Montreal switched away from transit to bikeshare, and

10% replaced cars. In Toronto, 44% of bikeshare respondants replaced transit and 27% replaced

cars (Martin, Shaheen and Cohen, 2013). Notably, they find rail use decreased but bus use was

largely unaffected (Martin, Shaheen and Cohen, 2013). Younes et al. exploit variation in subway

station closure during transit construction to provide some evidence in favour of modal integration

(2019).

Several papers in the literature have examined the effect of transit disruptions on bikeshare

ridership. Fuller et al. examine the effect of a week-long Philadelphia public transit strike on

bikeshare, using interrupted time series and Bayesian structural time series models (2019). They

find that ridership increased by 57% during the strike and returned to the base-level when transit

was restored (Fuller et al., 2019). The increase was composed of slightly more non-members than

members (Fuller et al., 2019). Similarly, Younes et al, find that in Washington DC bikeshare trips
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increased during planned transit disruptions from construction (2019). Again, the ridership returned

to normal levels after the disruptions (Younes et al., 2019). This finding is confirmed by Kaviti et

al. (2020). Younes et al conclude that in the immediate vicinity of a station in areas with high level

of rail service, bikeshare can complement transit (2019).

Though significant, the magnitude of these effects remains modest. The decrease in car use

in Montreal represents 0.4% of all car trips (Fuller et al, 2013). Similarly, the impact of transit

disruptions on bikesharing is comparatively small against the level of disruption. For instance, in

Philadelphia the increase in ridership was 86-92 more trips per 100 000 population per day (Fuller

et al., 2019). This is modest compared to the scale of a city-wide transit halt.

Data and Methodology

Description of data sets

This analysis combines three separate datasets. Data on bikeshare trips and transit service delays

is provided by the City of Toronto. The weather data comes from historical records of Environment

and Natural Resources Canada.

Bikeshare trip data

Toronto has had a 3rd generation bikeshare system since 2011. Currently, “Bike Share Toronto”,

has 625 docking stations and 6850 bikes. Bikes are rented from docking stations using the dock’s

kiosk or an app. Riders can purchase a (weekly, monthly, or annual) membership with unlimited

30-minute trips or a single 30-minute fare. If a bike is used for more than 30-minutes both members

and non-members are subject to additional fees. Hence, brief trips are strongly encouraged. Users

can check the live capacity of stations on the Bikeshare app or on Google Maps.

The bike share data contains every instance of bike rental since July 2016. Each entry includes the

start and end station, the precise time the bike was rented, returned, trip duration, as well as trip,

subscriber identifiers and membership type. The full data set contains several million observations.

The observations are restricted by date and location. Observations with start points near Spadina

subway station between April 1, 2019 and September 30th, 2019 were selected. In specification 1,

six bike share docks in the immediate vicinity of the subway station were used. In the expanded

specification, docks as far as 10 minutes away are included. At the trip level, there are 27 067

observations in specification 1, and 70 050 observations in specification 2. These specifications were
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used to capture the tradeoff between the relevance of a bike station and its capacity. The first

specification prioritizes relevance. In the event of a service disruption the closest bike docks would

be most useful to affected riders. However, if these docks are empty, those that are further afield may

become important. The time frame purposely excludes winter months. The year 2019 is selected to

minimize external factors such as bikeshare’s initial rise in popularity and, more recently, the effect

of COVID-19.

There are small differences between the docks used in the analysis and those that are currently on

the network due to service changes since 2019. Within the restricted set of immediate stations,

all of the current stations were present in 2019. In the expanded set, there are two docks that do

not appear in the data. The map in figure 1 shows the dock stations used in each specification.

Entrances to Spadina Station are marked with a red ’X’. The two docks not found in the data set

are crossed out. The number inside each pin refers to the current number of bikes at the given dock.

This information is available in the bikeshare website, app, and, most notably, on Google Maps.

Figure 1: Bikeshare docks included in each specification

Transit delay data

The second set of data used are the transit delay reports. Each incident on a Toronto Transit

Commission (TTC) bus, streetcar, or subway since 2014 is logged in these files. Each entry lists the

5



time, location, direction bound, cause, and length of delay. In this analysis, I use subway delays at

Spadina Station, a main interchange station in the city centre. All incidents causing a delay of 10

minutes or more are selected. Further, the delays are divided into “average” and “severe”. Average

delays last 10-20 minutes. There are two severe delays: one of 185 minutes and another of 108

minutes. To be sure that these events are not correlated with bike use at that time, I verify the

cause of the delay. In the first case, it is due to a fire at the station. The second case is a tragic

accident on the tracks. Consequently, the subway delays are plausibly exogenous of bikeshare use

at the time.

Historical weather data

The final data set is the historical weather data from Environment and Natural Resources Canada.

It provides a variety of hourly weather indicators from every weather station. There are several

weather stations in Toronto. Coincidentally, the “Toronto City” weather station is located within

walking distance of Spadina Station. Hence, the precipitation record is very accurate.

Model specification and Methodology

The model specification for the rate of bike rentals is linearly additive, containing parametric and

non-parametric terms:

RentalRate = α+f1(Time)+f2(Time, by weekend)+β1Weekend+β2Rain+β3Avg.Delay+β4SevereDelay

Since ridership is very cyclical throughout the day, the non-parametric smoothing function is applied

to the time of day. In addition, the temporal patterns are likely to vary between weekdays and

weekends. So, the smoothing function is also applied to time of day by the weekend/weekday

variable. For identifiability, “weekend” is also included as a parametric binary variable. The final

control variable is the binary “rain” variable. The coefficients of interest are β3 and β4, demonstrating

the effect of average and severe delays on the rental rate, respectively.

The trip data provides a detailed picture of each rental event. However, unlike conventional trans-

port, each bike rental event is separate and unscheduled. To gain a perspective on ridership, a flow

measure of bicycles is needed. A straight-forward way of achieving this is to count the number of

bikes rented from the set of stations over a given period of time. I use 15-minute intervals. This

transforms the dataset from rental events to flows: each “observation” becomes a 15-minute interval.
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The key variable becomes the number of bikes rented in that period. In essence, this is a simple pois-

son process. But, rather than imposing assumptions on the rental rate, the objective is to model it.

Hence, the trip data is transformed into flow/interval data. This requires only a minor level of aggre-

gation. The resulting data set contains 17 586 “observations”: 4 ∗ 24hours ∗ 183 days = 17586 = N .

Based on previous literature, factors that can be influential when modeling the rate include the time

of day, the weather, the built environment, proximity to prominent locations, availability of other

transport etc. (El-Assi et al., 2017). Since the analysis is restricted to a single station, there will

not be any variation in location-based factors. These effects will be captured by the constant. Of

the remaining variables, the most significant are likely to be time of day, weekend/weekday, and

weather. Since the horizon is restricted to warm months (April to September), inclement weather

will be in the form of rain. Finally, the variable of interest is binary, taking value of 1 when there

is subway delay.

To combine the data sets, first I merge the hourly precipitation. Each 15-minute period in the

hour is assigned the same precipitation value. For simplicity, I format the precipitation (given

in millimeters) into a binary variable. Using the transit data, I create a binary variable for the

delay. It takes value 1 from the starting time of the delay until 15 minutes after the delay ends.

The weekend binary variable is obtained from the interval (date and time) using a built-in STATA

function. Finally, I reformat the time-of-day into a number indicating hour and quarter hour, based

on the 24 hour clock. For example, 5:30pm becomes the number 17.5. Once the data is cleaned, the

analysis is conducted in R to make use of the Generalized Additive Model, ’gam’, function. I use

the Restricted Maximum Likelihood (REML) method for the smoothing parameters. Due to the

large sample size, there is no meaningful difference between using REML and the default smoothing

method in ’gam’ (a modified Newton optimizer). The results from estimating specification 1 with

and without REML are compared in the Appendix.

Results

Table 1 presents the key results from modeling the rate of bike rentals. Specification 1 and the

linear model use six bike docks immediately beside the subway station. Specification 2 expands the

number of bike docks to 13, all within a 10-minute walking radius.

Each specification has the same number of observations, 17568, because this is the number of 15-
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minute intervals between April 1st and September 30th. However, since specification 1 (and the

linear model) include fewer bike docks, fewer trips are used to inform the same number of intervals.

In particular, specification 1 uses 27 067 trips to form the 17 568 intervals. In specification 2, the

number of trips is 70 050. This drives the difference in explanatory power. Specification 1 captures

32.3% of the variation, while specification 2 captures 43.9%. Both non-parametric models far out-

perform the linear model, with an R2 of only 13.9%. By allowing for cyclical patterns in the time

effect, the model is significantly improved. The strong cyclicality in figure 2 is evidence against the

use of a linear model and demonstrates its low explanatory power. If a parametric specification is

required, a sinusoidal model would be more appropriate.

The non-parametric temporal effect is highly significant on its own and when interacted with week-

end. Both effects have a p-value approaching zero. The weekday cyclical pattern of bike rentals

(fig. 2, left panel) coincides with general traffic trends. Peak use occurs in the before and after

work periods, with lower daytime use. Night time use is very low, except for around 1am. Though

outside the scope of analysis, this timing coincides with the nightly closure of subways.

Figure 2, left panel should be interpreted as the ceteris-paribus effect of time of day. For illustration,

the peak evening use is 2 additional bikes per 15-minutes, all else held equal. So, on a non-rainy,

weekday evening, this would result in roughly 3.5 bikes rented per 15 minutes (1.5 from the intercept

plus 2 from the weekday hour effect).

The right panel of figure 2 shows the difference between the time effect on weekdays and weekends.

The time of day effect is inverted. The highest use occurs mid-day, while morning and evening use

is lower. Following from the previous example, a dry weekend evening would have 2.5 bike rentals

per 15 minutes: 1.5 from the intercept, plus 2 from the weekday hour effect, less 1 from the weekend

effect. Note that figure 2 is based on specification 1.

When looking at the parametric control variables, specifications 1 and 2 show that weekend and

rain are highly significant, both with p-values approaching zero. Bike rentals are slightly, though

significantly, lower on weekends. This is likely a location-specific characteristic. As expected, rain

has a significant, large, negative effect on bike rentals.

Lastly, table 1 shows that delays can have an impact on the bikeshare rental rate. Average delays of

10-20 minutes do not have a measurable effect on bikeshare use. However, severe delays of 2-3 hours,

have a positive, significant (at 5% level) effect in the immediate vicinity. Severe delays result in 0.7

additional bikes rented per 15 minutes. If the scope is expanded to include docks further away, the

coefficient remains positive but loses significance. It’s worth noting that this effect is fairly noisy

since only two severe delays took place over the period of analysis.
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Specification 1 Specification 2 Linear model

adj R2 0.323 0.439 0.139
N 17568 17568 17568
# trips 27 067 70 050 27 067

Parametric coefficients

(Intercept) 1.5219††† 2.9015††† 0.49675†††
(0.0131) (0.0202) (0.02884)

Weekend -0.2544††† -0.4922††† -0.06752∗
(0.0181) (0.0278) (0.0408)

Rain -0.9201††† -1.7359††† -0.845098†††
(0.0469) (0.0723) (0.05283)

Average Delay 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000)

Severe Delay 0.6913∗∗ 0.3210 0.70422∗
(0.3276) (0.5045) (0.36774)

Time of day – – 0.08592†††
– – (0.00208)

Time of day, by weekend – – -0.01571†††
– – (0.00294)

Non-parametric effects

F (p-value)

Time of day 695††† 1163††† –
0.0000 0.0000 –

Time of day, by weekend 106††† 201††† –
0.0000 0.0000 –

Table 1: Non-parametric models of bike renting rate, compared to basic linear model. (††† significant
at < 0.00001% level, ∗∗ significant at 5% level, ∗ significant at 10% level)
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Figure 2: Non-parametric effect of “time of day”. Left: total effect during weekday (base). Right:
difference in the effect of “time of day” between weekday and weekend

Discussion

The analysis presented here contributes to two discussions: the patterns of bikeshare use and the

observed interaction with the public transport system.

On the first point, this analysis benefits from availability of rich data allowing for non-parametric

methods. This method reveals strong cyclicality of use, which varies between weekday and weekend.

It is indicative of the dual-function of bikeshare: as a commuting and leisure device during the week

and weekend, respectively. While this pattern is cited in literature (El-Assi et al., 2017, Kong et al.,

2020), to my knowledge, this is the first analysis to use non-parametric methods to explicitly model

temporal patterns in bikeshare use.

This analysis demonstrates a statistically significant interaction between transit and bikeshare.

In contrast to previous studies examining modal shifts in transportation, I am able to distinguish

the real-time interaction between subway and bikeshare systems. When there is a severe transit

delay, bikeshare use in the immediate vicinity increases. This effect is in agreement with previous

literature capturing the effect of transit disruptions: bikeshare use increases for the duration of the

disturbance (Fuller et al., 2019; Younes et al, 2019; Kaviti et al., 2020). The main distinction is

that the disruption in my analysis is localized, unforeseen and plausibly exogenous. It demonstrates

that at least some riders are actively optimizing their use of public infrastructure, as opposed to
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adhering to a fixed, planned method of transport.

In addition, certain inferences can be drawn from the magnitude of the effect. At roughly 3

additional bikes per hour, it is modest compared to the impact of subway delays. However, this is in

accordance with previous literature (Fuller et al., 2019). Further, the magnitude could indicate that

bikeshare is a suitable alternative for few subway users. To this effect, Martin and Shaheen note

that the substitutability of bikeshare and transit is related to the degree to which transit specializes

in long or short commutes (2014).

Finally, the spatial pattern of the effect, captured by the difference between specifications one

and two indicates a highly localized effect. First, this reinforces the relationship between the subway

delay and increased bikeshare use. It also demonstrates the importance of convenient dock locations.

This is congruent with Fishman et al. who cite lack of docking stations as a high barrier to using

bikeshare services (2014).

Limitations and future research

A potential limiting factor in this analysis is the capacity of the dock stations. The effect of the

subway delay could be underestimated if bike docks near the subway station are empty at the

time. Future analysis could benefit from tracking dock capacity in addition to the outflow of bikes.

Furthermore, this analysis was limited to a single subway station. As a result, only two sufficiently

large delays occurred during the period of interest. If this analysis were expanded to include multiple

stations or modes of transportation, a more robust conclusion about rider switching behaviour could

be established.

Finally, future investigation could expand this analysis to profit from the network nature of the

data. Currently, the literature uses regression analysis to draw inference about general temporal

and spatial patterns. The granularity of the dataset would allow for modeling of a transporta-

tion network. This could contribute significantly to the modal integration/substitution debate by

investigating the spatial overlap (or complementarity) of trips made using bikeshare against the

existing transit routes. Other potential avenues could include investigating the effects of traffic,

road construction, or changes in parking availability on the localized use of bikeshare.

11



References

El-Assi, W., Salah Mahmoud, M., & Nurul Habib, K. (2017). Effects of built environment and

weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto.

Transportation, 44(3), 589–613.

Environment and Natural Resources, Government of Canada. (2020). Historical Climate Data.

[Data file] Retrieved from https://climate.weather.gc.ca/historical_data/search_historic_data_e.html

Faghih-Imani, A., Eluru, N., El-Geneidy, A., Rabbat, M., & Haq, U. (2014). How land-use and

urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal.

Journal of Transport Geography, 41, 306–314

Fishman, E., Washington, S., Haworth, N., & Mazzei, A. (2014). Barriers to bikesharing: an

analysis from Melbourne and Brisbane. Journal of Transport Geography, 41, 325–337.

Fuller, D., Gauvin, L., Kestens, Y., Morency, P., & Drouin, L. (2013). The potential modal

shift and health benefits of implementing a public bicycle share program in Montreal, Canada. The

International Journal of Behavioral Nutrition and Physical Activity, 10(1), 66.

Fuller, D., Luan, H., Buote, R., & Auchincloss, A. H. (2019). Impact of a public transit strike on

public bicycle share use: An interrupted time series natural experiment study. Journal of Transport

& Health, 13, 137–142.

Kaviti, S., Venigalla, M. M., Zhu, S., Lucas, K., & Brodie, S. (2020). Impact of pricing and

transit disruptions on bikeshare ridership and revenue. Transportation, 47(2), 641–662.

Kong, H., Jin, S. T., & Sui, D. Z. (2020). Deciphering the relationship between bikesharing and

public transit: Modal substitution, integration, and complementation. Transportation Research.

Part D, Transport and Environment, 85(102392), 102392.

Martin, E. W., & Shaheen, S. A. (2014). Evaluating public transit modal shift dynamics in

response to bikesharing: a tale of two U.S. cities. Journal of Transport Geography, 41, 315–324.

Shaheen, S., Martin, E., & Cohen, A. (2013). Public bikesharing and modal shift behavior: A

comparative study of early bikesharing systems in north America. International Journal of Trans-

portation, 1(1), 35–54.

Toronto Parking Authority. (2020). Bike Share Toronto Ridership Data. [Data file] Retrieved

from: https://open.toronto.ca/dataset/bike-share-toronto-ridership-data/

Toronto Transit Commission. (2020). TTC Subway Delay Data. [Data file] Retrieved from:

https://open.toronto.ca/dataset/ttc-subway-delay-data/

Wang, X., Lindsey, G. Schoner, J., & Harrison, A. (2016). Modeling bike share station activity:

12



Effects of nearby businesses and jobs on trips to and from stations. Journal of Urban Planning and

Development, 142(1), 1–9.

Younes, H., Nasri, A., Baiocchi, G., & Zhang, L. (2019). How transit service closures influence

bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area.

Journal of Transport Geography, 76, 83–92.

13



Appendix
The following table compares the regression results for specification 1 using REML and the default
smoothing method.

Spec. 1 with REML Spec. 1 Default

adj R2 0.323 0.323
N 17568 17568
# trips 27 067 70 050

Parametric coefficients

(Intercept) 1.5219 1.5219
(0.0131) (0.0131)

Weekend -0.2544 -0.2544
(0.0181) (0.0181)

Rain -0.9201 -0.9201
(0.0469) (0.0469)

Average Delay 0.0000 0.0000
(0.0000) (0.0000)

Severe Delay 0.6913 0.6918
(0.3276) (0.3277)

Time of day – –
– –

Time of day, by weekend – –
– –

Non-parametric effects

F (p-value)

Time of day 695 697
0.0000 0.0000

Time of day, by weekend 106 107
0.0000 0.0000

Table 2: Non-parametric models of bike renting rate, compared to basic linear model.
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